
Analysis of Algorithms

ECE 6775
High-Level Digital Design Automation

Fall 2024

1

Announcements

▸Lab 1 due tomorrow

▸HW 1 will be released today

▸ Instructor office hours rescheduled to
Thursdays 5-6pm, starting today

(1) How many 3-input LUTs are needed to implement the
following full adder?
(2) How about using 4-input LUTs?

2

Review: LUT Mapping

A B Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

▸Basics of algorithm analysis
– Complexity analysis and asymptotic notations
– Taxonomy of algorithms

▸Basics of graph algorithms
– An EDA application: static timing analysis

3

Agenda

Recap: Algorithms Drive Automation

4

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.]

subject matter are lost to other disciplines. The work-

shop attendees agreed that a good design back-

ground is important in EDA, and for the most part,

such courses are being offered; however, these mainly

teach the use of canned CAD tools and cannot cover

EDA algorithm topics in any depth. Workshop

attendees felt that a good senior-level introductory

CAD class could be developed and offered more

broadly in the US.

Exactly what subset to teach is a challenge be-

cause EDA is a broad, interdisciplinary field that con-

tinues to expand; for example, embedded systems is

a relatively new EDA topic. An ideal undergraduate

course should develop this breadth but avoid being

just an enumeration of disparate topics; it should em-

phasize a set of problem areas containing common

underlying algorithmic themes. This would allow in-

depth exposure to some algorithms and also introduce

the algorithmic and theoretic foundations of EDA.

At the graduate level, few universities have the

manpower to address all possible EDA topics. Figure 1

illustrates the skill sets an employer in the EDA field

needs and that delineate the kinds of skills and

knowledge that should be taught. The top layer lists

the set of products that are part of an EDA company’s

current offerings. These include extraction, simula-

tion, static timing analysis, place and route, synthesis,

engineering change, and formal verification. The

next layers of the graph (oval nodes) show software

that is used in these tools. For instance, synthesis

needs timing analysis, placement, logic synthesis,

and model checking. Extraction needs function-

approximation methods, PDE solvers, model-order

reduction, and machine learning. The next layer

lists the academic disciplines required by the people

who implement state-of-the-art tools in the listed

areas. For example, discrete optimization is used in

machine learning, placement, routing, search, and

logic optimization. The bottom layer categorizes

the underlying mathematics as either continuous

or discrete.

It was informative to look at a similar graph (not

included in this article) for some of the adjacent or

emerging technologies that might be part of the fu-

ture. That graph differed only in the first layer and

the interdependencies. Some of the future technolo-

gies listed were multidomain microsystems (such as

micromechanics), new device and process model-

ing, software verification, systems biology, parallel

computation, and so on. In addition, the types of

complexities to be met, and the problem scale to

be addressed, will be similar to those already encoun-

tered in EDA and so have already been solved to

some extent.

Perspectives

Machine
learning

Discrete mathematics

Logic and
semantics

F. Lang.,
automata and
concurrency

Combinatorial
algorithms

Discrete
optimization

Continuous mathematics

Continuous
optimization

Fast
linear

solvers

Nonlinear
solvers

Decision
procedures

Compilers Concurrency

Model
reduction

Model
checking

Logic
optimization

RoutingPlacementCircuit
analysis

Extraction Timing
analysis

Search

PDE
solvers

DAE
solvers

Function
approximations

FormalSynthesis ECPlace and
route

STASimToolExtTool

Figure 1. Fundamental areas and domain knowledge in EDA. (Courtesy Andreas Kuehlmann, Cadence

Design Systems, Inc.)

68 IEEE Design & Test of Computers

[3B2-14] mdt2010030062.3d 4/5/010 16:1 Page 68

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 15,2010 at 19:54:36 UTC from IEEE Xplore. Restrictions apply.

Topics touched on in 6775

Analysis of Algorithms

▸Need a systematic way to compare two algorithms
– Execution time is typically the most common criterion used
– Space (memory) usage is also important in most cases
– But difficult to compare in practice since these algorithms

may be implemented on different machines, use different
languages, etc.

– Plus, execution time is usually input-dependent

▸big-O notation is widely used for asymptotic analysis
– Complexity is represented with respect to some natural &

abstract measure of the problem size N

5

Big-O Notation

▸ Express execution time as a function of input size n
– Running time F(n) is of order G(n), written as F(n) is O(G(n)) when
∃n0, "n ≥ n0, F(n) ≤ K・G(n) for some constant K

– F will not grow larger than G by more than a constant factor
– G is often called an “upper bound” for F

▸ Interested in the worst-case input & the growth rate for
large input size

6

Big-O Notation (cont.)

▸How to determine the order of a function?
– Ignore lower order terms
– Ignore multiplicative constants
– Examples:
 3n2 + 6n + 2 is O(n2)
 n1.1 + 1000n is O(n1.1), n1.1 is also O(n2)
 n! > Cn > nC > log n > log log n > C

Þ n! > n10 > n2 > n log n > n > log n

▸What do asymptotic notations mean in practice?
– If algorithm A is O(n2) and algorithm B is O(n log n),
 we usually say algorithm B is more scalable.

7

More Asymptotic Notions

▸ big-Omega notation: F(n) is W(G(n))
– ∃n0, "n ≥ n0, F(n) ³ K・g(n) for some constant K

G is called a “lower bound” for F

▸ big-Theta notation: F(n) is Q(G(n))
– If G is both an upper and lower bound for F, it describes the

growth of a function more accurately than big-O or big-Omega
– Examples:

4n2 + 1024 = Q(n2)
n3 + 4n ≠ Q(n2)

8

Exponential Growth

▸ Consider a 1 GHz processor (1 ns per clock cycle)
running 2N operations (assuming each op requires one cycle)

N 2N 1ns x 2N

10 103 1 us
20 106 1 ms
30 109 1 s
40 1012 16.7 mins
50 1015 11.6 years
60 1018 31.7 years
70 1021 31710 years

9

NP-Complete

▸ The class NP-complete (NPC) is the set of decision
problems which we “believe” there is no polynomial time
algorithms (hardest problem in NP)

▸ NP-hard is another class of problems, which are at least
as hard as the problems in NPC (also containing NPC)

▸ If we know a problem is in NPC or NP-hard, there is
(very) little hope to solve it exactly in an efficient way

10

11

How to Identify an NP-Complete Problem
§ I can’t find an efficient

algorithm, I guess I’m just
too dumb.

§ I can’t find an efficient
algorithm, but neither can all
these famous people.

[source: “Computers and Intractibility”
by Garey and Johnson]

§ I can’t find an efficient
algorithm, because no such
algorithm is possible. More formally – In NP-completeness proofs,

a reduction is the process of transforming
one problem (which is known to be NPC)
into another in polynomial time to show that
solving the second problem would also
solve the first, proving the second problem
is at least as hard.

Problem Intractability

▸ Most of the nontrivial EDA problems are intractable
(NP-complete or NP-hard)
– Best-known algorithm complexities that grow exponentially with

n, e.g., O(n!), O(nn), and O(2n).
– No known algorithms can ensure, in a time-efficient manner,

globally optimal solution

▸ Heuristic algorithms are used to find near-optimal
solutions
– Be content with a “reasonably good” solution

12

Types of Algorithms

▸ There are many ways to categorize different types of
algorithms
– Polynomial vs. Exponential, in terms of computational effort
– Optimal (or Exact) vs. Heuristic, in solution quality
– Deterministic vs. Stochastic, in decision making
– Constructive vs. Iterative, in structure
…

13

Various Algorithm Design Techniques

▸ There can be many different algorithms for solving the
same problem
– Exhaustive search
– Divide and conquer
– Dynamic programming
– Greedy
– Linear programming (LP)
– Integer linear programing (ILP)
– Network flow
– Evolutionary algorithms
– Simulated annealing
…

14

Topics touched on in 6775

▸ Combinatorial algorithms
– Graph algorithms
…

▸ Computational mathematics
– Optimization algorithms
– Numerical algorithms
…

▸ Computational science
– Bioinformatics
– Linguistics
– Statistics
…

▸ Digital logic
– Boolean minimization
…

▸ Information theory & signal processing
…
▸ Machine learning and statistical classification

Many more

15

Broader Classification of Algorithms

[source: en.wikipedia.org/wiki/List_of_algorithms]

Topics touched on in 6775

Graph Definition

▸ Graph: a set of objects and their connections
– Ubiquitous: any binary relation can be represented as a graph

▸ Formal definition:
– G = (V, E), V = {v1, v2, ..., vn}, E = {e1, e2, ..., em}

• V : set of vertices (nodes), E : set of edges (arcs)
– Undirected graph: an edge {u, v} also implies {v, u}
– Directed graph: each edge (u, v) has a direction

16

Simple Graph

▸ Loops, multi edges, and simple graphs
– An edge of the form (v, v) is said to be a self-loop
– A graph permitted to have multiple edges (or parallel edges)

between two vertices is called a multigraph
– A graph is said to be simple if it contains no self-loops or

multiedges

17

Simple graph Multigraph

b
a

c

ed g

f
b

a

c

Graph Connectivity

▸ Paths
– A path is a sequence of edges connecting two vertices
– A simple path never goes through any vertex more than once

▸ Connectivity
– A graph is connected if there is a path between any two vertices
– Any subgraph that is connected can be referred to as a

connected component
– A directed graph is strongly connected if there is always a

directed path between vertices

18

Trees and DAGs

▸ A cycle is a path starting and ending at the same vertex.
A cycle in which no vertex is repeated other than the
starting vertex is said to be a simple cycle

▸ An undirected graph with no cycles is a tree if it is
connected, or a forest otherwise
– A directed tree is a directed graph which would be a tree if the

directions on the edges were ignored

▸ A directed graph with no directed cycles is said to be a
directed acyclic graph (DAG)

19

Examples

20

c
a

b d

e

f

g

c
a

b d

e

f

g

Directed graphs with cycles Directed acyclic graph (DAG)

a

b c d

e f g h i j k

Tree

Graph Traversal

▸ Purpose: visit all the vertices in a particular order,
check/update their properties along the way

▸ Commonly used algorithms: Depth-first search (DFS);
Breadth-first search (BFS)

21

a

c

d

b

DFS order (from node a):
a à ?

BFS order:
a à ?

▸ A topological order of a directed graph is an ordering
of nodes where all edges go from an earlier vertex (left)
to a later vertex (right)
– Feasible if and only if the subject graph is a DAG

22

Topological Sort

a

c d

b
a cdb

Application in EDA: Static Timing Analysis

▸ In circuit graphs, static timing analysis (STA) refers to
the problem of finding the delays from the input pins of the
circuit (esp. nodes) to each gate
– In sequential circuits, flip-flop (FF) input acts as output pin, FF

output acts as input pin
– Max delay of the output pins determines clock period
– Critical path is a path with max delay among all paths

▸ Two important terms
– Required time: The time that the data signal needs to arrive at

certain endpoint on a path to ensure the timing is met
– Arrival time: The time that the data signal actually arrives at

certain endpoint on a path

23

24

STA: An Example

▸ pred(n): predecessors of node n
– e.g., pred(f) = {d, e}

▸ succ(n): successors of node n
– e.g., succ(e) = {f, g}

In
pu

t p
in

s

O
ut

pu
t p

in
s

a

b

d f

c

e

g

h

25

STA: Arrival Times

0

0

0

0
0

1

1

1

2

2

3
3

4 4

5 5

ATf = maxkÎpred(f){ATk} + df

▸ Assumptions
– All inputs arrive at time 0
– All gate delays = 1ns (d = 1); all wire delays = 0

▸ Questions: Arrival time (AT) of each gate output?
Minimum clock period?

Gates are visited in a topological order

a

b

d f

c

e

g

h

STA: Required Times

26

4

4

5

5

5
5

0
0

0
1

1
RTf = minkÎsucc(f){RTk – dk}

2

2

3

3
3

▸ Assumptions
– All inputs arrive at time 0
– All gate delays = 1ns (d = 1); all wire delays = 0
– Clock period = 5ns (200MHz frequency)

▸ Question: Required time (RT) of each gate output in
order to meet the clock period?

Gates are visited in a reverse topological order

a

b

d f

c

e

g

h

STA: Slacks

▸ In addition to the arrival time and required time of each
node, we are interested in knowing the slack (= RT - AT)
of each node / edge
– Negative slacks indicate unsatisfied timing constraints
– Positive slacks often present opportunities for additional

(area/power) optimization
– Node on the critical path have zero slacks

27

▸ Assumptions:
– All inputs arrive at time 0
– All gate delays = 1ns, wire delay = 0
– Clock period = 5ns

▸ Question: What is the maximum slowdown of each gate
without violating timing?

28

STA: Use of Slacks

5-3=2

5-4=1

5-5=0

Slacki = RTi – ATi

5-5=0

4-4=0

3-3=0
2-2=01-1=00-0=0

0-0=0

2-2=0

4-1=3

1-1=0
0-0=0

3-0=3
3-0=3

▸Binary decision diagrams (BDDs)

29

Next Lecture

▸These slides contain/adapt materials from /
developed by
– Prof. David Pan (UT Austin)
– “VLSI Physical Design: From Graph Partitioning to

Timing Closure” authored by Prof. Andrew B. Kahng,
Prof. Jens Lienig, Prof. Igor L. Markov, Dr. Jin Hu

30

Acknowledgements

